
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
If u is a differentiable function of x, we apply the
Chain Rule to get

$$
\frac{d}{d x} \tan ^{-1} u=\frac{1}{1+u^{2}} \frac{d u}{d x} .
$$

Copyrigh © 2007 Pearson Education, Inc. Publishing as Pearson Prentioe Hal
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Derivative of the Arcsecant
Suppose we have the function $y=\sec ^{-1} x$ $y=\sec ^{-1} x \Rightarrow x=\sec y$
Differentiate implicitly:

In General:
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Given $y=\sec ^{-1}(3 x-4)$, find $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=\frac{1}{|3 x-4| \sqrt{(3 x-4)^{2}-1}} \frac{d}{d x}(3 x-4)
$$

Copyright © 2007 Pearson Education, Inc. Publisting as Pearson Prentice Hal
Slide 3-14
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

