

<i>p. 167</i> EQ. How do we apply the derivatives of the inverse trig functions?	
The derivative is defined for all real numbers. If <i>u</i> is a differentiable function of <i>x</i> , we apply the Chain Rule to get $\frac{d}{dx} \tan^{-1}u = \frac{1}{1+u^2} \frac{du}{dx}.$	
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall	Slide 3- 10

p. 167 EQ: How do we apply the derivatives of the inverse trig functions?
Derivative of the Arcsecant
If *u* is a differentiable function of *x* with
$$|u| > 1$$
, we have the formula
 $\frac{d}{dx} \sec^{-1} u = \frac{1}{|u|\sqrt{u^2 - 1}} \frac{du}{dx}, |u| > 1.$

